Implementation of COTs hardware
In Non Critical Space Applications

A BRIEF TUTORIAL

Presentation to 17th Annual
Microelectronics Workshop
JAXA, Tsukuba, Japan, October 20, 2004

Geoffrey L. Yoder, NASA JSC Branch Chief
EV Parts, Packaging, and Manufacturing Branch
Phone: 281-483-8698
Geoffrey.l.yoder@NASA.gov
NASA’s Vision
To improve life here,
To extend life to there,
To find life beyond.
NEPAG “Extended Family”

 Associates Partners NASA Centers
ELECTRICAL, ELECTRONIC AND ELECTROMECHANICAL (EEE) PARTS ENGINEERING

- EEE Parts Selection Process for non critical COTs hardware
 - (Evaluation of high criticality hardware is not covered in this presentations)
 - Today’s Major Challenge for EEE Parts Assurance - Commercial-Off-The-Shelf (COTS) component and box level hardware
- Workmanship requirements overview for COTs
Traditional EEE parts Categories

Level 1 Microcircuits

Level 1 microcircuits are defined as those currently qualified to

- MIL-PRF-38535 "Integrated Circuits (Microcircuits) Manufacturing, General Specification for" as QML Class V or,
- MIL-M-38510 "Microcircuits, General Specification for" as QPL JAN Class S or,
- Space quality source control drawings (SCDs), where QML/QPL does not exist, which meet all of the technical requirements of MIL-STD-883, Method 5004 and 5005 for a Class S device

National Space Development Agency of Japan (NASDA) QTS Class I

Level 2 Microcircuits

Level 2 microcircuits are defined as those currently qualified to

- MIL-PRF-38535 "Integrated Circuits (Microcircuits) Manufacturing, General Specification for" as QML Class Q or,
- MIL-M-38510 "Microcircuits, General Specification for" as QPL JAN Class B, when modified/screened per mission requirements for space

National Space Development Agency of Japan (NASDA) QTS Class II
EEE Parts Background

EEE Parts Background

- Parts have traditionally been viewed as the source of failure in spacecraft systems.
- This was true for earlier parts because of quality and reliability problems with evolving microelectronics.
 - Recent data shows that parts and quality factors are the minor constituent of spacecraft failures.
- In the 60's, MIL-STD-883 Quality and Reliability Assurance procedures were developed for Monolithic Microcircuits.
- In the 70's, additional mil specs were drafted to define requirements for “space-rated,” or Class-S components.
 - Screening effectively weeded out substandard components and screening became a standard building block for spacecraft systems.
- 80’s & 90’s - Electronics manufacturers heavily automated their processes to increase quality and reliability while decreasing cost for markets such as automotive, consumer electronics, and machine-tools.

 1 Sarsfield, Liam, “The COSMOS on a Shoestring.,” Santa Monica, CA, RAND MR-064-OSTP, 1998, pp. 119, 139

- Requires the EEE Parts Engineer to understand the part application rather than just selecting parts from an approved parts list.
The goal and the challenge for the space community is to take advantage of the availability and performance of commercial microelectronics for space systems, while retaining sufficient radiation tolerance and reliability to insure mission success.
COTs Hardware Plays a Vital Role in Space Programs

Photos taken in space with COTs cameras

Laptop Computers used on the International Space Station

Cable Time Domain Reflectometer tester for ISS

Video Imaging processor Requires significant modifications for use in Space

All hardware must be evaluated for the application

COTs items were modified for Space applications

Radiation testing, conformal coating, workmanship evaluation, flammability, burn-in etc.
More than ever, NASA must select advanced technology parts for use in the space environment.

Methods other than traditional “look on the approved parts list” must be used to meet the challenges of using new technologies in space.

Previously qualified Military and Space level parts are not always available for new applications.

Selection of Best-In-Class components and vendors is a vital part of ensuring mission success.

Requires a high skill level of parts and process expertise to ensure mission success.
Space environment, confined volume, human factors, and vacuum conditions require proper material selection

- Out gassing/Off gassing (NASA certified materials referenced in MAPTIS)
 - Can contaminate critical components such as camera lenses
- Flammability
 - Spacecraft and human safety
- Toxicity
 - Critical because humans are in confined areas
- Hermeticity
 - Components exposed to vacuum can implode/explose without proper venting
 - Components operate differently in vacuum – internal elements of non hermetic components can be affected
 - Oil canning of the package
- Thermal
 - Traditional heating and cooling methods such as convection are not the same in 0-G as in gravity
 - Air flow for cooling must now be forced airflow
- Mechanical
 - 0-G imposes different mechanical challenges
 - Items such as traditional loose CD player trays will not function. The CD will float.
- Ionizing Radiation
 - Can latch-up a component or cause upsets disabling hardware
EEE Parts Selection Philosophy

- Assure all EEE parts used in spacecraft hardware designs are of a quality and reliability level commensurate with the mission environment and requirements.
 - May require redundancy
 - Could require additional screening
- Allow the use of most advanced parts technologies that are generally available in the commercial market place, with emphasis on using those that have a proven reliability track record and meet the specific expected application environment.
 - Laptop Computers
 - 200 MIP processors
- Focus on Best In Class (BIC) manufacturers

✓ Caution: Not all vendors and manufacturers produce the same quality level hardware
Five key steps to selecting Best-In-Class EEE Parts Manufacturers

1. Definition of the application environment
 • Determine the EEE Part application environment
 • Understand design feature requirements

2. Part identification and selection
 • Close interaction between Design and Parts Engineering
 • Determine the best technology type available for the application

3. Identification and Qualification of manufacturers
 • General assessment and specific family/line assessment
 • Vendors overall commitment to quality and reliability

4. Validation of line and part capability to meet environmental requirements
 • Qualification results, NASA’s GIDEP ALERTs

5. Establish and maintain an ongoing relationship with qualified manufacturers

- Requires an understanding of the Manufacturers and their processes
Ionizing Radiation Effects

Ionizing Radiation can disable hardware including COTs hardware

FET used in a laptop docking station experienced a destructive latchup during high energy proton testing
COTs Hardware is susceptible to SEU's

SEU’s collected on numerous Shuttle flights

SEUs from 10 STS flights flown @ 51.6° inclination

circle - single bit; triangle - multiple bit; square - single bit during Entry

Legend:
- STS-100
- STS-102
- STS-98
- STS-97
- STS-92
- STS-106
- STS-101
- STS-96
- STS-88
- STS-91
Example of High Energy Proton Testing

Test Preparation

- Visual parts inspection
 - manufacturer & part number
 - lot-date code
 - function
- X-ray board & assemblies
- Beam grouping based on function & priority

Laptop in the high energy proton beam

X-Ray to identify microcircuit die regions
Example of Results from High Energy Proton Testing

Primary Docking Station:

Error #1: Position #5 (unknown parts) Computer hang/crash (machine check exception); no recovery; power cycle required
Occurred at 337 rads (Si) (fluence of 5.63 E9) subsequent reboot OK

Error #2: Position #17 (part of A/C power supply)
Test program errors, followed by computer crash; no recovery; power cycle required
Occurred at 34 rads (Si) (fluence of 5.66 E8)
Docking station would not turn back on! -- Destructive Latch or permanent failure assumed!

Backup Docking Station:

Error #1: Position #14 (Silicon Image Si10648CL160) Computer crash; no recovery; power cycle required
Occurred at 236 rads (Si) (fluence of 3.94 E9)
Docking station would not turn back on!
Destructive Latch or permanent failure assumed!

Predicted MTBF of 101 days for destructive latch up

Test early and test often – Lot variations are real
Manufacturing Standards Vary for COTs Hardware

NASA Workmanship Standards List

- NASA-STD-8739.2 NASA Workmanship Standard for Surface Mount Technology
- NASA-STD-8739.3 Soldered Electrical Connections
- NASA-STD-8739.4 Crimping, Interconnecting Cables, Harnesses, And Wiring
- NASA-STD-8739.5 Fiber Optic Terminations, Cable Assemblies, And Installation
- NASA-STD-8739.7 Electrostatic Discharge Control (Excluding Electrically Initiated Explosive Devices)

NASA Workmanship Technical Committee:

- NASA-STD-8739.7 ESD is now superceded by ANSI/ESD S20.20-1999
- Other Standards such as J-STD-001, IPC6012 are under review

Typically not used in manufacturing of COTs hardware
Reliance on Industry IPC Standards for COTs

IPC Specification Tree

Electronic Assembly
- Acceptance
 - IPC-C620
 - IPC-A-610
 - IPC-9501
- Assembly
 - J-STD-001
 - IPC-A-610-A
 - IPC-7711
 - IPC-7721
 - IPC-610

Solderability
- IPC-WP-201
 - J-STD-002
 - IPC-C620
 - IPC-C630
 - IPC-7701
 - IPC-7721
 - IPC-610

Advanced
- IPC-TR-001
 - J-STD-002
 - IPC-C620
 - IPC-C630
 - IPC-7701
 - IPC-7721
 - IPC-610

Cable and Wire Harness
- IPC-WSWA-A-620
 - J-STD-002
 - IPC-C620
 - IPC-C630
 - IPC-7701
 - IPC-7721
 - IPC-610

Optoelectronics
- IPC-0040

Assembly Track
- Assembly
 - IPC-D-279
 - IPC-D-320
 - IPC-C-406
 - IPC-C-408
 - IPC-SM-762

Interfaces
- IPC-D-320
 - IPC-D-311
 - IPC-D-351
 - IPC-D-365
 - IPC-D-369
 - IPC-D-371
 - IPC-D-391
 - IPC-D-251

Optical
- IPC-D-279
 - IPC-D-311
 - IPC-D-351
 - IPC-D-365
 - IPC-D-369
 - IPC-D-371
 - IPC-D-391
 - IPC-D-251

IPC Staff Liaison
- Jack Crawford — crauford@ipc.org
- Tom Newton — newtte@ipc.org
- John Perry — perry@ipc.org
- Dieter Bergmann — berg@ipc.org
- Jeanette Connolly — connolly@ipc.org
Workmanship Evaluation Process

Workmanship standard certification to ISO, IPC, NASA-STDs etc. is no guarantee the vendor will produce high quality reliable hardware

• Key observation elements to focus on during a vendor survey
 – General appearance
 • Appearance is an indication of the attitude of a company
 – Casual conversations with employees
 • Listening to employees often reveals the pulse of the company
 • Excessive praise or constant complaints
 – Statistical Process Controls (SPC)
 • Evidence of continuous process improvement and is it being used for CPI or just show
 – Dedicated touch-up personnel
 • High employee number for dedicated touch-up often reveals a process problem
 – Mixture of flight and non flight hardware in the same area
 • Often reveals a lack of discipline to ensure hardware pedigree
 – Equipment maintenance and calibration
 • Is hardware close to end of calibration? Is the equipment clean or heavily used?
 • Maintenance records for excessive down time could show process problems
 – Design for manufacturability process includes layout for automation
Workmanship

Workmanship of hardware affects overall hardware reliability - good or bad

- Poor workmanship can introduce latent failures
- Cracked component seals due to improper component heating
- Corrosion from improper cleaning
- Corona as a result of icicles
- Fractured solder joints causing intermittent failures
- Broken wires as a result of improper wire fastening and stress relief

UNACCEPTABLE SOLDER SLIVERS
Solder slivers are an indication of improper process control.
NASA-STD-8739.3 [13.6.2.c.4]

GENERAL REQUIREMENTS WRAP ORIENTATION
Conductors may be wrapped clockwise (CW) or counterclockwise (CCW) to the terminal, but the curvature of dress shall be such that the wrap will tighten against the terminal if the conductor is pulled.
NASA-STD-8739.3 [9.1.8]
Examples of Hardware Failures

- **Improper mounting and strain relief**
- **No evidence of component staking**

Broken Leads

Figure 1. Overall view of capacitor. Arrow points to broken lead. Note length of lead to the bend on right. There was no evidence of residual staking material on the Mylar sleeve. 3.5x

Figure 2. Close-up of wire lead showing joint at right. Arrow points to fractured lead. 12x

Figure 3. End view of broken lead. Low-angle light captures the typical "beachmark" appearance of a fatigue failure. Note that the side of the lead between the white arrows has been flattened. The beachmarks radiate from this side, indicating that the fatigue crack originated on the flat side of the wire. 64x

Figure 4. Viewed under a SEM, the surface of the fractures reveals thousands of parallel striations indicating that the lead failed due to high-cycle fatigue. The crack progressed in the direction of the white arrow, roughly at right angles to the striations. Each flexure causes the formation of a striation. 660x
Examples of Hardware Failures

Improper staking nullified wire strain relief
Examples of Hardware Failures

Seemingly small problems can still cause major failures

Braid strand lodged inside connector shorting signal pins
Summary

It does not take a group of wizards to determine how to use COTs in non-critical space applications.

Approaches used for manned applications include limited items such as CD-players evaluated for safety to high criticality applications where the COTs hardware is evaluated on a case-by-case basis for the application and commensurate screening and qualification testing.

COTS hardware is successfully implemented in both the International Space Station and Space Shuttle but requires evaluation and modifications for the application.

Screening and qualification of COTs hardware used in critical applications may need to be more extensive and stringent than traditional military screening.

Evaluation for
- Suitability for the application
- Safety
- Reliability and maintainability
- Workmanship