Non-Destructive Inspection Method of BGA Using X-ray Systems for High-Density Mounting Space Applications

Masao Nakamura, Hirotaka Azuma, (Nippon Avionics Co., Ltd.)
Toshiyuki Yamada (Fukushima Avionics Co., Ltd.)
Tsuyoshi Nakagawa, Norio Nemoto, Koichi Shinozaki (Japan Aerospace Exploration Agency)

October 27, 2006
Outline

• Background
• Major Defects of BGA
• Inspection Method
• Results
• Summary
• Tasks
• Recently, demands of high-density mounting technique for miniaturization of space applications have increased.

• We are considering to apply BGA packages to space applications as a solution of high-density mounting.

• A critical issue of BGA package is that inner balls cannot be inspected by a conventional visual inspection method.

• In these circumstances, we focus on inspection methods of BGA using X-ray systems.
Major Defects of BGA

In-line defects

- Ball Misalignment
- Non-reflow
- Non-wetting
- Open
- Scratch
- Solder Ball Dispersal
- Ball Shape Defect
- Excessive Solder
- Solder Bridge
- Missing Ball
- Void

End-of-line defect

- Crack
Inspection Method

BGA Samples

- Plastic BGA (388pin)
 - Number of Layers: Six Layers
 - Pattern: Daisy Chain
 - Pitch: 1.27mm
 - PWB Material: FR-4
 - PWB Size: 77.5mm(W) X 120mm(D) X 1.6mm(T)

- Metal BGA (560pin)
 - Substrate: PWB
 - Eutectic (63Sn/37Pb)
 - Metal heat sink: (Cu)
 - Layer: 0.9mm

- Ceramic BGA (400pin)
 - Substrate: PWB
 - Eutectic (63Sn/37Pb)
 - High melt (90Pb/10Sn)
 - Layer: 0.75mm
 - Eutectic (63Sn/37Pb)
Inspection Method (cont.)

Specification of X-Ray Systems

<table>
<thead>
<tr>
<th>Apparatus</th>
<th>Microfocus X-ray(I.I.)</th>
<th>Microfocus X-ray(FCR*)</th>
<th>Microfocus X-ray(FPD**)</th>
<th>3-D X-ray CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-ray tube</td>
<td>Sealed X-ray tube</td>
<td>Open type X-ray tube</td>
<td>Sealed X-ray tube</td>
<td>Open type X-ray tube</td>
</tr>
<tr>
<td>X-ray detector</td>
<td>Image Intensifier</td>
<td>Imaging Plate</td>
<td>Flat panel (Six megapixels)</td>
<td>Flat panel (Six megapixels)</td>
</tr>
<tr>
<td></td>
<td>(I.I.)</td>
<td>(IP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detector</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gray-scale</td>
<td>256 gray-scale</td>
<td>1024 gray-scale</td>
<td>4096 gray-scale</td>
<td>4096 gray-scale</td>
</tr>
<tr>
<td>Condition</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Focal spot size : 7µm</td>
<td>Focal spot size : 1-4µm</td>
<td>Focal spot size : 1-4µm</td>
<td>Focal spot size : 1-4µm</td>
</tr>
<tr>
<td></td>
<td>Tube voltage : 150kV</td>
<td>Tube voltage : 100-120kV</td>
<td>Tube voltage : 100-120kV</td>
<td>Tube voltage : 100-120kV</td>
</tr>
<tr>
<td></td>
<td>Tube current : 66µA</td>
<td>Tube current : 100-150µA</td>
<td>Tube current : 100-150µA</td>
<td>Tube current : 100-150µA</td>
</tr>
<tr>
<td>Image processing</td>
<td>Digital image processing</td>
<td>Digital image processing</td>
<td>Digital image processing</td>
<td>Digital image processing</td>
</tr>
</tbody>
</table>

* FCR : Fuji Computed Radiography (FUJI PHOTO FILM CO., LTD)
** FPD : Flat Panel Detector

![FCR System](http://www.oe.nagoya-denki.co.jp(contents/products/nlx/NLX5000e_forweb.files/index.html)
Results

Result

<table>
<thead>
<tr>
<th>No.</th>
<th>Defect Item</th>
<th>Apparatus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>I.I.</td>
</tr>
<tr>
<td>1</td>
<td>Ball Misalignment</td>
<td>***</td>
</tr>
<tr>
<td>2</td>
<td>Non-reflow</td>
<td>***</td>
</tr>
<tr>
<td>3</td>
<td>Non-wetting</td>
<td>***</td>
</tr>
<tr>
<td>4</td>
<td>Open</td>
<td>***</td>
</tr>
<tr>
<td>5</td>
<td>Scratch</td>
<td>***</td>
</tr>
<tr>
<td>6</td>
<td>Solder ball dispersal</td>
<td>**</td>
</tr>
<tr>
<td>7</td>
<td>Ball shape Defect</td>
<td>***</td>
</tr>
<tr>
<td>8</td>
<td>Excessive Solder</td>
<td>***</td>
</tr>
<tr>
<td>9</td>
<td>Solder Bridge</td>
<td>***</td>
</tr>
<tr>
<td>10</td>
<td>Missing Ball</td>
<td>***</td>
</tr>
<tr>
<td>11</td>
<td>Void</td>
<td>**</td>
</tr>
<tr>
<td>12</td>
<td>Crack(CeramicBGA)</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Crack(Plastic/MetalBGA)</td>
<td>*</td>
</tr>
</tbody>
</table>

- ***: Detectable
- **: Depend on position
- *: Undetectable
- ---: N/A

In-line defects

End-of-line defects
Example of In line Defects

- Solder ball dispersal (Metal BGA)

Solder balls of 30um in diameter were detectable clearly by microfocus x-ray.
Results (cont.)

Example of In line Defects (cont.)

- Void (Plastic BGA)

<table>
<thead>
<tr>
<th>Detectable</th>
<th>Detectable</th>
<th>Detectable</th>
<th>Detectable</th>
</tr>
</thead>
</table>

- It is possible to know the void position using 3-D X-ray CT.
Example of End-of-line Defect

- **Crack (Plastic BGA)**

<table>
<thead>
<tr>
<th>Undetectable</th>
<th>Detectable</th>
</tr>
</thead>
</table>

Microfocus X-ray (FCR) | 3D X-ray CT | DPA

Crack size is 13um.

3-d X-ray CT allows us to detect the crack which is undetected by microfocus X-ray.
Crack of Ceramic BGA was detected by both microfocus X-ray and 3-D X-ray CT.
• **Capability of 3D X-Ray CT System**

 Microfocus X-ray (FCR)

 3-D X-ray CT

 Detectable

 Horizontal image 1
 Horizontal image 2
 Horizontal image 3

 Vertical Image 1
 Vertical Image 2
 Vertical Image 3
Results (cont.)

- Capability of 3D X-Ray CT System (cont.)

Summary

• In-line defects of BGA can be detected by microfocus X-ray(I.I./FCR/FPD) or 3-D X-ray systems.

• It is possible to detect solder cracks by 3-D X-ray CT system.

• We hope that X-ray inspection is an effective way to evaluate the quality of BGA assembly when applied for space applications.
Tasks

- Evaluation of X-ray inspection capability on an actual flight module or a test vehicle.

- Upgrading and expanding of our design rules of PWB for BGA mounting.
今回報告したBGAの非破壊検査技術をまとめた技術資料がございます。ご興味のある方は下記メールアドレスに氏名、会社名、住所、連絡先（電話、FAX、E-mail）、ご意見・ご要望等をお送りください。

宇宙航空研究開発機構 安全・信頼性推進部

E-Mail：HDMTECH@jaxa.jp