Past, Present and Future Trends for NASA’s EEE Parts Program

MAXIMIZING SPACE PARTS
ASSURANCE RESOURCES

Presentation to 16th Annual
Microelectronics Workshop
JAXA, Tsukuba, Japan, October 25, 2003

NASA’s Vision
To improve life here,
To extend life to there,
To find life beyond.
Overview

- Today’s Major Challenge for EEE Parts Assurance - Commercial-Off-The-Shelf (COTS)
- Standardization - Uses and Benefits
- NASA’s History with EEE Parts Standardization
- “New” Options for EEE Part Standardization
 - AQEC
 - By Manufacturer
 - By Higher Level Assembly
- Conclusions
Commercial-Off-The Shelf

The Reality

To an **Accelerating Degree NASA Needs to Use COTS for Performance and Increasingly for Availability**

Also The Reality

NASA Could Not Afford to Build Shuttle, Hubble, or Chandra With **All COTS EEE Parts AND** Assure Their Reliability Using Part-Specific, Traditional Assurance Practices

Today’s Drivers for Change

1) **Cost-Constrained Missions**
2) **Tight Schedules**
3) **Aggressive Science and Technology Goals**
 - COTS Frequently Seen as a Solution to All Three
 - COTS Can be the **ONLY** Solution Where Essential Technology Capability is the Driver

But, the Hidden Costs and Complications of a COTS-Based Solution Can Surprise the Unwary
Cost of Ownership – Microcircuits

NASA Cost Estimate Model Assumes Typical Mix of Part Types for Spacecraft/Instrument

NEPAG Risk Matrix (Inherent Risk)

<table>
<thead>
<tr>
<th>Part Groups</th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>NPSL Level 1 975 Grade 1</td>
<td>NPSL Level 2 975 Grade 2</td>
<td>NPSL Level 3 Vendor Flow</td>
<td>COTS</td>
</tr>
<tr>
<td>Actives</td>
<td>MIL Class S,V,K ESA Level B NASDA Class I</td>
<td>MIL Class B,Q,H ESA Level C NASDA Class II</td>
<td>MIL 883B QML M,N,T,D,E</td>
<td>COTS</td>
</tr>
<tr>
<td>Passives</td>
<td>MIL S/R Fail Rate ESA Level B NASDA Class I</td>
<td>MIL P Fail Rate ESA Level C NASDA Class II</td>
<td>MIL M/L Fail Rate DSCC Drawing</td>
<td>COTS</td>
</tr>
</tbody>
</table>
COTS Risk Factors

- Frequent Process and Design Changes
- Lot-to-Lot Variation
- “Lots” Can Consist of Unknown Mixes of Sub-lots
- Integrity of Plastic Encapsulated Microcircuit (PEM) Packages Difficult to Assess
- Manufacturer Reliability Data May Contain Unidentified Biases and Have Limited Relevance to Procured Parts
- Design Margins Minimized, << Conservative Than MIL
- Limited Operating Temperature Range (0°C to 70°C)
- Minimal Screening Determined by Primary Market Needs
- Rapid Obsolescence
- Unpredictable, Lot-Variable Radiation Characteristics

Traceability?

Made in one or MORE of the following countries: China, Hong Kong, India, Japan, Taiwan, South Korea, Malaysia, Singapore...The exact country of origin is unknown
Two Principal EEE Parts Options

Military/Hi Rel
- Known performance (reliability)
- Specification driven
- MIL Temp. Range (-55C +125C)
- Controlled/monitored sources
- Consistent requirements
- Known traceability
- Change notification
- Interchangeability
- Use-as-is or minor upgrading
- Older technologies
- Long lead times
- High procurement costs

Commercial-Off-The-Shelf (COTS)
- Unknown performance (and reliability)
- Commercial market driven
- Limited Temp Range (0 to +70C)
- Unmonitored sources
- Variable market driven requests
- Variable traceability (none?)
- Limited change notification
- Vendor specific variations
- Upgrading for assurance
- Newest technologies
- Short lead times
- Low procurement costs

Traditional Solution - Standardization

- **What We Do When Things Get TOO Varied**
- **Standardization Can Be Used To:**
 - *Ensure interchangeability of parts from different sources*
 - *Enhance reliability by promoting use of parts, whose satisfactory performance has been established*
 - *Reduce number of items to be stocked*
 - *Maximize efficiency and effectiveness of limited resources*
 - *Achieve economies of scale for procurements*
 - *Provide a single measurement system so everyone gets the same result*
 - *Incorporation of lessons learned*

* Challenges for COTS EEE parts
Optimum Use of Scarce Resources

The project parts engineer can get ~50% of parts from the standard parts list. Project resources can be focused on the rest. The “wizards” are available as a technical resource.

The standardization “wizards” identify, research and evaluate parts as standards. Compile Standard Parts List.

NASA’s History of Standardization

• Began As Project-Specific Attempts to Reduce Part Count and Improve Reliability
• At That Time (1960’s) There Was/Were:
 – No established system to provide “space qualified” parts
 – Newly emerging solid state technologies
 – Limited knowledge and resources
 – Unknown reliability, part-to-part, lot-to-lot, vendor-to-vendor
• NASA Centers With Multiple Projects Realized Center-Level Standardization Could Increase Efficiency
• Standard Parts Used for Critical and Basic Functions, Non-Standards Used Where Their Function is Essential

Better to know a lot about a few parts rather than know little about many
NASA’s History of Standardization

- 1962/3, First Space Level Specifications (transistors) MSFC, GSFC
- 1962, MSFC Publishes PPL-100
- 1964, GSFC Publishes PPL-1
- 1969, MIL-M-38510 Class A&B Microcircuits
- 1970?, JPL Publishes PPL
- 1973, Class S Microcircuit Spec MIL-M-0038510
- 1995, First Release of GSFC “Instruction”, now EEE-INST-002
- 1996, Last GSFC PPL, PPL-21 Notice 1
- 1997, NPSL On-line Begun
- 1998, MIL-STD-975 Canceled (Revision M, Notice 3)

Current NASA EEE Parts Standardization

- No Formal Agency-Wide Standardization
- Instead, Center-Specific Parts Guides:
 - MSFC-STD-3012
 - GSFC EEE-INST-002
 - JPL-D-20348
 - SSP 30312 (Space Station)
- Guides Still Define Part Grades or Levels:
 - 1: MIL Class S, V, K, JAN, S and R Failure Rates
 - 2: MIL Class B, Q, H, JANTXV, P Failure Rates
 - 3: MIL Class M, N, D, E, 883B, JANTX, JAN, M Failure Rates
 - 4: COTS, etc.
- Rules:
 - “Use-As-Is” for Required Grade or a Level Higher
 - All Others Require Disposition by Non Standard Parts Approval Request (NSPAR) or by a Parts Control Board
Current NASA EEE Parts Standardization

- Not “One NASA”, but Rather Center-Specific Approaches
- Standardization Today Is Encouraged by Cost
 - Cost of ownership usually less for “use -as-is” MIL part than for “upgraded” COTS
- Standard Parts Are Mostly US MIL
 - They Are Generally Reliable
 - Becoming Increasingly Outdated
 - How Much Longer Will They Be Available?
- There Are NO COTS Standard Parts - Yet?
- How Can COTS Be Standardized?
 - With the Frequent Changes, Limited Testing, Restricted Temp Range, Unknown Reliability, Unpredictable Radiation Hardness

There are At Least Three Possible Answers

Possible Answer #1 - Aerospace Qualified Electronic Component

- AQEC - Concept of Government/ Industry Aviation Group
 - Could Address Some of NASA Concerns About PEMs
- AQEC Would be Manufactured As Part of Normal Production
- It is a “Definition” Not a Spec or Standard
 - Will define “Aerospace Temp. Range” (ATR)
 - -40 °C to +125 °C
- Each Manufacturer Would Generate Own Specification
- Does Not Require Specific Testing
- Qualification Requires:
 - Assessment of part’s ability to operate over ATR
 - Device specific data sheet and part number
 - Expected lifetime within ATR documented on data sheet
 - Stable part configuration for a period TBD

Still Very Much a Work in Progress
Possible Answer #1 - AQEC

• What’s in It for the Manufacturer?
 – Extra business – from an untapped market segment
 – Prestige – by being able to advertise the parts are used in space
 – Knowledge – from the detailed experiences of hi-rel users
 – Minimal additional costs for one-time characterization of part over extended temperature range provision of reliability models
 – Two major US manufacturers are offering their own “enhanced plastic” lines of PEMs, that offer many AQEC-like features

• What’s in It for the User?
 – Insight into manufacturer reliability numbers
 – A manufacturer specification showing part performance over an extended temperature range
 – Some restriction on rapidity of changes
 – Notification of changes

Possible Answer #2 - Standardization by Manufacturer

• Use Approved Supplier List to Define Standard Parts
• Some Manufacturers’ Products Better Meet Our Needs
• Large Supplier Product Characteristics Tend to Be Fairly Stable Over Time and Across Product Lines
• Mergers and Acquisitions Can Have Unpredictable Impacts
• Assurance Still Requires Diligence
• Procurement From the Standard List Would Likely Still Require Lot Assurance Testing and/or Focused Screening
• Use Integrated Product Teams

Federal Acquisition Regulations (Law) Makes This Very Difficult for NASA, Not for Our Contractors
Possible Answer #3 - Standardization by Higher Level Assembly (HLA)

• Many Spacecraft and Instrument Systems Are Available as COTS Assemblies
 – Power supplies
 – Attitude control
 – Star trackers
 – Communication systems
 – Processors
 – Ground systems
• Example: BAE Systems’ RAD750 Processor Board
 – Projects want it configured differently
 • Mission environment
 • Technology readiness
 • Functionality
 – Could We Standardize?
 – What Are the Benefits?

Possible Answer #3 - Standardization by Higher Level Assembly (HLA)

• What Are the Particular Benefits of Standardization at the Next Higher Assembly For the Assembly Manufacturer?
 – Increased demand for fewer variations
 – Lower set-up costs
 – Higher yields
 – Reduced delivery schedules
 – Fewer items to stock
 – Higher profits
Possible Answer #3 - HLA

- What Are the Particular Benefits of Standardization at the Higher Level Assembly For the Aerospace User?
 - The assembly manufacturer has the prime responsibility to keep up with part and vendor changes
 - Optimizes Scarce Technical Resources
 - Multi-discipline assurance teams can develop an intimate understanding of the assembly design, materials, workmanship and performance of the standard assemblies
 - Standardized test and assessment protocols can be developed as part of a performance specification
 - Opportunity for competition once standard assemblies are defined

Barriers to HLA Standardization

- Identifying Suitable Candidates
- Getting Acceptance of One or a Few Variants to Satisfy Most Applications
- Persuading the Assembly Manufacturers to Cooperate in Developing Standards
- Achieving Culture Change at NASA
 - Concept of HLA standardization is new and different
 - Intra-organizational participation
 - Establishment of Product Teams
- Concerns About Consistent Reliability as Parts, Materials and Designs Change
Conclusions

- Standardization Continues As a Key Strategy in NASA’s Approach to EEE Parts Assurance
- Increasing Use of COTS Parts Makes Traditional, Parts-focused Standardization Much More Difficult
- Three Strategies for Standardization Approaches That Could Accommodate COTS Have Been Suggested
- COTS Compatible Standardization Is Likely to Require a NASA Culture Change to Achieve Success Through Any of the Three Suggested Options
- It Seems Unlikely That Any of the Three Options Will Achieve the Assurance of Reliability Enjoyed With MIL Parts